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L SUMMARY

This final report summarizes the achievements and activities on the AFOSR Grant

No. 83-0071 from February 15, 1983 to August 15, 1988.

The research under this grant has, to date, resulted in four journal publications and

seven conference papers. One additional paper has been accepted for presentation at the

AIAA 27th Aerospace Sciences Meeting, and another one will be submitted for presen-

tation at the next AIAA Fluid Dynamics or CFD conference. It is anticipated that there

will be two more journal publications for all the work that has been completed. Nine

students have been supported fully or partially on this grant. Two graduated with a
Ph.D., four with an M.S., and the other three continue to work on their dissertation

topics.

The main theme, as originally proposed, has beeh adaptive solution refinement. A

novel approach called Truncation Error Injection (TEl) was introduced during the course

of research. The idea behind TEI is very simple, i.e., the exact nodal value of the solu-

tion to a differential equation could be obtained on any grid and from solving a

difference equation that models the differential equation if the truncation error, were

known. Although the TE is not known in general, it can be approximated on a local grid

patch. This approach of approximating the local error due to discretization in effect

decouples a problem of multiple disparate length scales into problems of single length

scale so that they can be solved more efficiently on a computer than the original prob-

lem. Three types of applications have been demonstrated. In addition to solution

refinement by TEI, we have shown that the decoupling of the unsteady computation

from the steady one by TE could significantly reduce the computing time and storage

for flutter prediction, and that viscous effects can be computed separately and injected

into the solution of an inviscid solver for viscous flow computation. Some of the advan-

tages of this approach are: it requires very little modification to the base solver; no com-

patibility problems in using different grids and different solvers; readily suited for

multi-processors.

This method has also been applied to study problems related to the dynamic stal-

ling of an airfoil. A key question in dynamic stall is when and where does the boundary

layer separate? Our method enables one to resolve the details of a local flow field such
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as the behavior of the boundary layer at the leading edge of the airfoil. This extension

of our work will be reported in detail for a different AFOSR grant.

H1 SYNOPSES of JOURNAL PUBLICATIONS

Four journal publications are attached as Appendix I. The first paper, entitled

"Adaptive Refinement with Truncation Error Injection," outlines the TEI methodology

and demonstrates, with model problems in fluid mechanics, the versatility, efficiency and
accuracy of the methodology. The second paper, entitled "Refined Numerical Solution of

the Transonic Flow Past a Wedge", shows an application of TEI on one of the classical

problems in transonic flows. A solution accurate to 1% of the drag value of the flow

over a wedge has been obtained using TEl. An analysis of this result confirmed for the

first time the existence of a weak oblique shock right after the expansion at the shoulder

in addition to the normal shock downstream. The third paper, entitled "Computation of

Unsteady Transonic Aerodynamics with Truncation Error Injection," extends the TEI
methodology to decouple the computations of the unsteady aerodynamics due to

unsteady body motion and the steady aerodynamics due to body thickness such that the
unsteady computation can be done more efficiently on a much coarser grid than that

used for the steady flow computation. A factor of sixteen in the saving of computing

time has been demonstrated using examples of oscillating airfoil in the transonic speed

range. The fourth paper, entitled "Computation with Error Injection," was an invited

paper presented at the Sixth International Conference of Numerical Modelling in Sci-

ence and Technology. This paper reviews the TEI methodology and further generalizes

it to accommodate the use of different equations on different grids.

III PAPERS to be PUBLISHED

A paper entitled "Viscous-Inviscid Interaction and Local Grid Refinement Via

Truncation Error Injection," has been accepted for presentation at the AIAA 27th

Aerospace Sciences Meeting of January, 1989 in Reno, Nevada. It will be shown that

accurate prediction of the flow over an airfoil can be obtained by solving the Euler
equation on a relatively coarse global grid with viscous effects computed separately on a
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boundary-layer type grid and injected into the global grid solution as a combination of

vorticity and truncation error. In addition to the efficiency and accuracy gained by using

TEl, the solution on the local grid reveals details of the shock structure and a jet-like

flow emanating from the root of the normal shock in the shock boundary layer interac-

tion zone. This result has already shed some light on the possible mechanisms causing

the onset of separation of dynamic stall. It is anticipated that a further extension of the
TEI methodology to equation solvers in body-fixed coordinates and nonstationary grid

will allow us to explore this important area of research.

Another paper under preparation for presentation and publication is called "An

Efficient Scheme for Three-Dimensional Unsteady Transonic Computations". Many

techniques, including TEI, have been incorporated into an full potential code in general-
ized coordinates to achieve both accuracy and computational efficiency for flutter pred-

iction for the transonic regime. A full scale application of this scheme on the prediction

of the flutter boundary of an AGARD standard wing will be demonstrated.

These papers will be sent to AFOSR as soon as they have been published.

IV THESIS TITLES and AUTHORS

"Numerical Studies of Shock Wave Resolution By Mesh Refinement", Masters

Report, 1984 -- J. M. Tripp

"Computations of Unsteady Transonic Aerodynamics with Truncation Error Injec-

tion", Masters Report, 1985 -- L-K. Fu

"Refined Numerical Solutions of The Transonic Flow Past a Wedge", Ph.D.

Dissertation, 1985 -- S.-M. Liang

"A Truncation Error Injection Approach to Viscous-Inviscid Interaction", Ph.D.

Dissertation, 1988 -- B. D. Goble

"An Efficient Scheme for Three-Dimensional Unsteady Transonic Computations",

Masters Report, 1988 -- J. G. Schoen

These reports and dissertations are available upon request.
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V CONFERENCE PRESENTATIONS

"The Effects of Compressibility on Dynamic Stall" (with L. W. Carr),

AIAA/ASME/SIAM/APS Ist National Fluid Dynamics Congress, July 25-28, 1988,
Cincinnati, Ohio, Vol. II, pp. 799-805, Paper 88-3541-CP.

"An Analytical Study of Compressibility Effects on Dynamic Stall" (with L. W.

Carr), AFOSR/FJSRL/DFAN/U. Colorado Workshop II on Unsteady Separated

Flows, July 20-30, 1987.

"Efficient Computations With Error Injection" (with B. D. Goble), Invited Paper,

Proc. Sixth International Conference on Mathematical Modelling, August 4-7,

1987, St. Louis, Missouri.

"A Truncation Error Injection Approach to Viscous-Inviscid Interaction" (with B.

D. Goble), AIAA 25th Aerospace Science Meeting, January 12-15, 1987, Reno,

Nevada, AIAA Paper 87-540.

"Refined Numerical Solutions of the Transonic Flow Past a Wedge" (with S. H.

Liang), Paper No. AIAA-85-1593, presented at AIAA 18th Fluid Dynamics and

Plasma Dynamics and Lasers Conference, Cincinnati, Ohio, July 1985.

"Computation of Unsteady Transonic Aerodynamics With Steady State Fixed by

Truncation Error Injection" (with J.-K. Fu), Paper No. AIAA-85-1644, presented at

AIAA 18th Fluid Dynamics and Plasma Dynamics and Lasers Conference, Cincin-

nati, Ohio, July 1985.

"A Truncation Error Injection Approach to Viscous-Inviscid Interaction" (with B.

D. Goble), Session Ce: Vortex Motion 1, 38th Annual APS Meeting, Tucson,

Arizona, November 1985.
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COMPUTATION WITH ERROR INJECTION

K.-Y. Fung and Brian D. Goble

University of Arizona. Aerospace and Mechanical Engr. Dept.. Bldg. 16, Tucson,
AZ 85721 USA

Abstract. In the context of computational fluid dynamics, the adaptive refinement
technique with truncation error injection due to Fung et al (1984) is extended to
include differences in the governing equations being used on the fine and coarse
grids. This method allows the decoupling of a problem of multiple length scales
into problems of simple length scale which can be more efficiently resolved on
separate grids and using different formulations pertinent to the length %cales than
on a single grid. Three variants of this method are exemplified with applications to
problems in computational fluid dynamics. Substantial savings in computer time
and storage are achieved in the examples.

Kevwords. Solution refinement. Truncation error; Multiple grid: Multigrid.

INTRODUCTION elsewhere. Also, since the grids are separate, they
do not have to be solved simultaneously, only

In the following we will introduce a methodology requiring information pertaining to one grid to be
which allows the decoupling of a complex problem resident in memory at a time. Although. in gen-
of distinct length scales into problems of simple eral, more points will be used overall, they will be
length scale so that they can be solved more used more efficiently and will give greater accuracy
efficiently on a computer. The examples we have for a given amount of computing effort.
chosen here to apply this methodology to are prob-
lems in computational aerodynamics, since they are It is also possible to use different solvers on the
of our prime interest. We hope a review of our different grids. Therefore, the solver that is most

works in the development of this methodology will appropriate to the purpose of each grid can be
make it known to other disciplines and further its chosen. For example. a full-potential code could be
applications, solved on a coarse global grid while the Euler equa-

tions are solved around a shock to correctly predict
Computation of flows over aerodynamic bodies has the shock jumps and the Navier-Stokes equations
reached a stage where solutions to most engineering are solved in the region near the body to resolve
problems can be found with some degree of accu- the viscous effects that are important there. In this
racy. Solvers are available for equation sets ranging way, a solver that is only as sophisticated as it needs
from the Laplace equation for subsonic or super- to be can be used. This approach is similar to the
sonic flow to the Reynolds-averaged compressible singular perturbation techniques in applied
Navier-Stokes equations for transonic flow. The mathematics.
choice of equations to be solved to predict some
given flow situation depends on such variables as Of course, using a multiple mesh scheme adds prob-
degree of accuracy required, computer resources lems inherent to the approach. Information must
available, codes available, complexity of geometry, be passed between the grids in such a way that the
and complexity of flow situation. Ideally, the most overall accuracy and stability of the scheme is not
accurate code available would be used on a grid with compromised in any way. Also, the bookkeeping
sufficient resolution to capture all of the relevant required to keep track of the solution on several
physics of the flow field. However, the computer different grids is more involved and needs to be
resources in terms of memory and CPU time automated or it will become burdensome. There is
required to implement the desired code on a suit- some memory and CPU time overhead due to stor-
able grid are always limited. ing bookkeeping information and setting up the grid
The generation of such a rid is one of the main interaction algorithms. Another possible problem

area is conservation. Most solvers used today instumbling blocks in the solution process. One way transonic applications are in conservative or diver.
to simplify the grid generation process and to gence form. This form is required for the scheme
increase the resolution for a given number of points to conserve such quantities as mass, momentum,
is to break up a single global grid into several local and energy. In regions of the flow Reld where the
grids that either overlap each other or interact solution is smooth, conservative form is not impor-
through a single, coarse, global grid. The local grids tant, but when discontinuities such as shocks appear
could be generated about individual components of in the solution, conservation must be maintained in
the geometry or in regions where the characteristic order to correctly predict their location. Even if the
length scale is much smaller than that of the global solvers themselves are conservative, if shocks cross
flow field, such as around the leading or trailing a grid boundary that is not treated conservatively,
edge of an airfoil, in the boundary layer or around a the accuracy of the solution could suffer.
shock. Since the individual grids are only required
to resolve one or two length scales, the task of gen- The method described here will interact two or
crating them is greatly simplified, allowing points to more grids together in the solution of unsteady,
be clustered where needed without wasting them transonic, viscous flow over an airfoil. The method

. I 116
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will support the use of a different solver for each will yield the exact solution at nodal points. Hence,
grid, which will be interacted through a global it is clear that if the goal is to improve a numerical
coarse grid using the method proposed by Fung et solution, the basic grid structure need not be
al(1984). This approach treats the local grid solu- changed, only improved values of TE at grid points
tions as more accurate approximations to the correct need to be provided. To emphasize this point, the
flow deld than the global solution and uses them to base grid in the examples considered here is never
correct the global solution. In this way. the global changed. The strategy one would use in making
solution feels the effect of each local grid and serves tradeoffs between the base grid and approximating
to transmit this data to each of the other local grids, the TE is not discussed in this paper.
Section 2 reviews the approach due to Funs et a
and Section 3 extends this approach to account for Analytically, the TE consists of all higher deriva-
differences in operators and formulations. In Sec- tives of the function being expanded in a Taylor
don 4, we present results from three applications of series, if they exist. If more neighboring values of
the method. a function are known, higher dervatives can be

computed, and hence the TE can be better approxi-
TRUNCATION ERROR AND mated. A TE sequence may be defined as follows:

GRID REFINEMENT
T£Iev - TE(0-,,vJ) - L,,, v (8)

Most numerical analysis books state that a
differential operation L operating on a function 4 is where the subscript h/ N refers to values based on a
related to a difference operator LA (with the sub- grid of size h/N (e.g.. subdividing the base grid of
script / denoting the grid size), operating on 0 by size h, N times). For simplicity, we may assume
the truncation error (abbreviated TE hereafter). i.e., *A/N satisfies the equation

Lo - L,* + TE(V,h) (1) L,.,NO,M - 0 (9)

This result of a Taylor series expansion is the basis With these definitions and the substitution of Eqn.
for all finite difference techniques. Ordinarily, the (8) into Eqn. (6) and setting ip - *Ahjv, it is easy to
direct system, see that *, a 6jjN is a solution of Eqn. (5) at coin-

ciding nodal points (or through the use of an inter-
LO, 0 (2) polation function).

is solved for Oh. As a consistency requirement, the All we have shown so far is that it is possible to

Ti vanishes as the step size h approaches zero. obtain a refined numerical solution satisfying Eqn.

leading to the limiting solution ~(5) without changing the base grid, provided the TE
is known to the same order of accuracy as the solu-

Lrn $I,0 (3) tion. The inclusion of TE into the difference equa-
A tion has been suggested before. Lentini and

Pereyra (1974) proposed a deferred correction pro-
that satisfies the differential equation cedure to compute the TE progressively. Warming

and Hyett (1974) and Klopter and McRae (1983)
L 0 - 0. (4) implemented it in forms of a modified equation.

For some simple linear differential equations, even
Hence, it is assumed that it the TE is uniformly analytical expressions of the TE in terms of lower
small, solving the discrete system Eqn. (2) will lead derivatives of the unknown function have been
to a good approximate solution ,. of 4. However, used. However, the complexity involved in the
in many p, hems the TE is a rapidly varying func- derivation of such terms and, in some. the numeri-
tion of its arguments. The idea of conventional cal instabilities caused by the presence of certain
grid-adapting techniques is to look for or modify the terms has discouraged the more popular use of such
distribution of grid points according to some preset schemes. Liang and Fun$ (1985) and Fung et al
criteria which will render uniformity of TE across (1984) both demonstrated that the above logic
the solution domain. Unfortunately, there is no significantly reduced the computation work required
simple way to generate a grid that minimizes the TE to achieve a refined numerical solution satisfying
for a given problem and, in many cases, the process Eqn. (5) without significantly increasing the com-
of finding the optimal grid is more complicated and plexity involved.
:ime consuming than computing the solution itself. TRUNCATION ERROR Dt2E TO
We must remember that it is Eqn. (4) that one OPERATOR DIFFERENCES
wants to solve, not Eqn. (2). The discrete equation
that ought to be solved corresponding to solving Now extend the TE(0,h) term in the above equa-
Eqn. (4) is implied by Eqn. (1), i.e., tions to include differences between the coarse grid

operator and the fine grid operator, i.e. the fine
Lg..4 + TE(Fh) = 0 (5) rid equations can be a higher order accuracy ver-

sion of the original equations or even a different
Here, weiave deliberately denoted the argument equation set entirely. For example, apply the above
function # of the TE with a bar, which can be logic to a set of equations where the operator can be
different from the solution 0j,. Notice that if the split into different parts, each part representing its
exact solution were availablS it would satisfy Eqn. own physics with its own characteristic length scales.
(5) exactly, with 4 - #it 4. This implies that the e.. the Navier-Stokes equations (NSE). Write the
TE can be computed exactly by applying the opera- NE in operator form as
tor L, to the solution, e.g..

TE(,,h) - - L,%4 (6) L,e, + L44 - Re-'Lvo, - 0 (10)
where the total operator has been split into the tern-

and that solving the system poral, convective, and viscous operators. Each of
these operators can be associated with different

L,.4o =- TE(*,h) - Lg,4 (7) aspects of the flow field having distinct length
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scales. When these equations are ,being solved Y1.11
numerically, a gid must be used which can capture
all of the rtelevant length scales, however disparate
they are. Generating such a grid which wilaL
allow the equations to be effciently solved can be, l"
quite d lt As mentioned earlier, we can solve X
each operator on a grid which resolves, its own
relevant physics and use TE injection to bring the
separate effects to a global grid. For the sake of

example, say that the physical phenomena associ-
ated with each of the operators in Eqn. (10) have
length scales which decrease from left to right and a.a
that the last operator is only important in some par-
ticular region of the flow field. Then, we can solve WOO
Eqn. (11) on a grid local to that region which has
sufficient resolution to capture the relevant physics.

- Re-.LNolv - 0 (11) 0.4

The influence of this solution can then be forced
into the global solution via TE injection by solving

on the global grid which is only fl0e enough to
resolve the physics relevant to the L" operator. i.e.
M < N. If the grids used in solving Eqn. (11) and
Eqn. (12) cover the same domain, then the solu-
tion of Equ. (12) will represent the fine grid soa- a . .. . .31
lion at the coarse grid nodes, while, if the fine grid
is only a subset of the total domain, the solution of

Eqn. (12) will reproduce the fine grid solution at FIG. 1. Numerical Solution of a temperature
the coarse grid nodes which tlie within the fine grid diffusion layer (60O grid), no TE injection.
region with some influence from the rest of the
domain.

Now, if the temporal effects can be thought of as
perturbations to a steady state, Eqn. (13) can be - 0.25. Solving the equations on a 120x80 grid
solved for the final solution on a grid which is only only slightly improved the solution and neither case
as fine as necessary to resolve the unsteady physics, compared well with the exact solution. Given suit-

able pattern recognition schemes, it would be
L,01 + Lk/W, - L4s (13) natural to introduce a rotated grid parallel to the

flow direction over a small region surrounding the

As explained in Fung et al (1987), the RHS of Eqn. discontinuity with boundary conditions extracted

(13) is an approximation to the TE resulting from a from the original solution. Here, we have done this

Taylor's series expansion of the differential equation manually with a 20x40 grid aligned with the flow.

that Eqn. (12) is modeling. Eqn. (13), if allowed to Due to grid rotation, the cross-wind artificial

converge to a steady state, will reproduce the fine diffusion is minimized, resulting in a sharp tempera-

grid solution at the coarse grid nodes. For unsteady ture gradient very close to the exact solution. The

calculations, the RHS fixes the steady solution so isotherms that appear near the upper and lower

that only the unsteady perturbations to this solution boundary of the refined local solution on the

must be resolved. subgrid (Fig. 2) are an effect of the incorrect boun-
dary conditions extracted from the base grVid solu.

In this section we have introduced a procedure simi- tion; these can be avoided simply by taking a larger
lar to that suggested by Brandt (1980) for separating subgrid. However, with the injected TE, the
the length scales of a problem so that they can be improved base solution provides a sharp gradient
solved more efficiently. Following arc some exam- without such isotherms (Fig. 3). which shows that
ples which show that the injection of the TE due to the base grid solution is readjusted smoothly
differences in grids and operators is a simple but through the artificial boundaries.
effective means of improving the accuracy and
efficiency of a numerical solution. .

RESULTS

The first problem was chosen to study this pro-
cedure with rotated grids aligned with discontinui-
ties in the flow field. This is a case where the fine
grid operator is merely a different form of the
coarse grid operator. We solved the linear, two- 4.44 a ' ...

dimensional convection-diffusion equation for a
nominal quantity T. modeling two adjacent fluids of FIG. 2. Locally refined solution on
initially different temperatures moving at the same
speed. Upwind differencing was used for the con- a rotated 20x40 grid.
vective terms. It is well known that the artificial
cross-wind difflsion due to upwind differencing is a
major source of error. It causes excessive spreading

oftediscontinuity. Fig. 1 shows the temperature The second example is the use of Ti injection to
contours solved on a 60x40 base grid of step size h maintain the inviscid steady flow corresponding to
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time, the coarse Wrd solution 57 seconds, and the
coarse grid solution with TE injection 60 seconds.
A reduction in computation time by a factor of four

body shape while the perturbed unsteady flow is attributed to the reduction in grid points and
corresponding to unsteady body motions are being another factor of four to the relaxation of the allow-
computed. In unsteady transonic flow, for low to able time step imposed by numerical stability.
moderate reduced frequencies, the typical wave
length of an acoustic signal is of the order of the This technique has also been applied by Schoen
chord of the wing. Hence, a grid with a minimum (1987) to three dimensional flow in a code
spacing of a tenth of the chord should be developed at Nasa-Ames for Transonic UNsteady
sufficiently fine to resolve these waves. However, Aerodynamics - TUNA, due to Bridgeman and
in a typical inviscid flow, the smallest characteristic Steger (1982). Results are presented for supercriti-
length scale is on the order of the radius of curva- cal flow over a rectangular wing with NACA-0012
ture of the leading edge of the airfoil. Therefore, a cross-section and an aspect ratio of 6. Fig. S shows
grid with a minimum spacing of a hundredth of a the deviation of the pressure coefficient from the
chord is needed to resolve the flow field. Due to fine grid steidy state at the airfoil midspan for the
linear or nonlinear numerical instability, these grids fine grid solution and the coarse grid solution with
may require too small a time step for efficient com- TE injection. Note that the scales used in Fig. S do
putations of the unsteady acoustic waves caused by not permit us to show the large deviations found in
the small unsteady win$ motions and deformation the coarse grid solution without TE injection. The
assumed in flutter analysis. In order to ease the wing is plunging harmonically at a reduced fre-
restrictions on the tie step, Funt and Fu(1985) quency of 0.4 in a freestream with Mach number
used the technique described above to compute the 0.7. The calculations were performed on a fine grid
steady and unsteady flows on different girds. 89x4 9 xl, on a coarse grid 45x25xl8, and on the

coarse grid with TE injected. The grids were not
They assumed inviscid flow so Re--*- and only coarsened in the spanwise direction as the typical
Eqos. (12) and (13) above are relevant. Eqn. (12) spacing in this dimension is too large on even the
is solved on a grid which is fine enough to resolve fine grid for resolving acoustic waves. The method
all the relevant physics in the steady flow field, captures the steady-state solution exactly. Various
Eqn. (13) is solved on a grid which is only as fine as phases from the first cycle are shown to verify that
required to resolve the acoustic signals as described the unsteady procedure maintains respectable accu-
above. Results are presented for supercrtical flow racy as well. With 100 steps per cycle, the fine grid
over an NLR 7301 arfoiL. The airfoil is pitching solution took 68 Cray seconds per cycle and the
harmonicadly at a reduced frequency k a 0.1 in a coarse grid with or without TE took 19 seconds per
freestream with Mach number of 0,7. The calcula- cycle. Because the time marching scheme in his
tions were performed on a fne grid 109%87, a code is unconditionally stable, there were no time
coarse grid 54x43, and on the coarse g with TE step restrictions to be relaxed on the coarse grid.
injection from the fine grid. Fig. 4 compares the Thus, a reduction in computation time by a factor
unsteady pressure distributions at 90 degree inter- of about four is attributed to the reduction in grid
vals. From these om risons, it is evident that, points.
except for minor differences near the shock, the
results obtained on the coarse grid with TI injection The third example shows the use of TE injection to
are just as accurate as those on the fine gi'd. The fix the viscous effects in a steady flow field while
fine grid solution required 900 seconds of CPU using a less dense grid to calculate the inviscid
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FIG. 5. Comparisons of the unsteady
deviations from the fine grid steady state

solution for an ONERA-M6 airfoil.

aspects of the flow. As mentioned above, a grid
with a minimum spacing of a hundredth of a chord
should be sufficient to resolve the inviscid flow
field. However, in a viscous calculation, the impor-
tant length scale is thagf the boundary layer thick-
ness which is O(l/4 Re), and in a turbulent flow .2.
there is a sublayer whose length scale is even
smaller. For accuracy, a grid must be used which
will resolve these small scales and yet must still
retain enough points away from the body to resolve
the far field. These requirements, coupled with
smoothness limitations, result in a highly clustered 8
grid with a large number of nodes which tends to
slow convergence of viscous calculations. In order
to resolve the two regions of flow with their distinct
length scales more efficiently, we have applied the ., .. 0. , ,. ., ,. ,. 3.,
above method to allow the viscous and inviscid cal- X
culations to be computed on separate grids. FIG. 6. Fine (61x61) and coarse (16x 16) grids

The method is implemented using the thin-layer used for calculation of boundary layer flow.
Navier-StokesEuler code ARC2D due to Steger
(1978) and extended by Pulliam and Chaussee
(1981,1984). The code was applied to a laminar.
compressible boundary layer on a flat plate at zero Fig. 6 shows the two grids used. Fig. 7 compares
angle of attack; see White (1974) for details of this the results found on the 16xl6 grid using the Euler
solution, equations plus forcing terms (INVISJ) with the fine

A laminar, viscous solution was found on a 61x61 grid results using thin-layer Navier-Stokes (VIS4).
base pri. corresponding to the solution of Eqn. As the plot shows, the horizontal momentum is
(11), in the full domain using ARC2D and desig- resolved very well by the coarse grid when forcing
nated the fine grid solution. At first, in Eqn. (12) terms are used. Fig. 7 also compares INVIS$ with
the forcing terms were formed using the same grid thinlayer Navier-Stokes results on the 16x16 grid
as the coarse grid. The forced calculation was then tout foicing(VSD). It is obvious that INVISJ is
performed with free stream initial conditions. As a far better solution than VISD.
expected, the forced calculation returned the origi-
nal solution. CONCLUDING REMARKS

Eight more grids were formed from the base grid by The technique of truncation error injection intro-
keeping every other or every fourth coordinate line duced by Fung et al (1987) has been successfully
in either direction. The fine grid solution was res- generalized to include operator differences in the
tricted to each of the eight coarser grids. These truncation error term. This generalization has
eight grids are subsets of the fine grid so the restric- enabled the use of multiple grids to resolve widely
tion process is merely an injection of the fine grid disparate length scales, significantly increasing the
solution at common grid points. In each case, the efficiency of the solution process while retaining
forcing function was formed and a forced calcula- accuracy. The different grids are each required to
tion performed using free stream initial conditions. resolve only one aspect of the flow field, making
Only the results from the finest and coarsest grids them much easier to generate and more efficient in
will be shown here. their use of points.

. .. . , 'I
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aerodynamic computations are based on these considerations.
However, these grids, while suitable for computing steady
flows. may require (due to linear or nonlinear numerical in-
stability) too small a time-step limitation for efficient com-
putations of the unsteady acoustic waves due to the small
unsteady wing motions and deformations assumed in flutter
analysis. For low-co-moderate reduced frequencies, the typical
wavelength of an acoustic signal in a transonic flow is of the
order of the chord of the wing. Hence, a grid with a minimum
spacing of a tenth of the chord should be sufficient. However,
an accurate prediction of the steady flowfield over a wing at
supercritical Mach number often requires a minimum spacing
of a hundredth of the chord and. hence, a time-step require-
ment based on the CFL condition 10 times as restricted as that
needed for accuracy.

In this Note, a technique is introduced that allows the steady
and unsteady flows to be computed on different grids. To
demonstrate the efficiency of this technique, the unsteady
small-disturbance transonic equation is used for unsteady
aerodynamic prediction. The results of applying this technique
are compared to those obtained on single grids.

Computations with Truncation Error Injection
It has been showns that, by solving the corresponding dif-

Computation of ference equation with the truncation error included as a forc-

Unsteady Transonic Aerodynamics ing term, exact nodal values of the solution to a differential
equation can be obtained; that if the exact solution werewith Truncation Error Injection known, the exact truncation error can be computed at nodal
points; and that the truncation error can be approximated by
local grid refinement.

K.-Y. Funsg and J.-K. Fut Consider a difference equation of the form
University of Arizona, Tuscon, Arizona

LO,+L,6 -0(I)

where L, and L, correspond to the temporal and spatial
Introduclion discrete operators, respectively, and *I the numerical solution

T HE urgent need for effective, reliable methods for on a grid of size h. Assuming that *i is the steady-state solu-
unsteady aerodynamic predictions at transonic Mach tion of Eq. (i) satisfying

numbers is evident from the Farmer and Hanson' experiment
in which it was observed that the flutter boundary for a wing L,02 -0 (2)
with a supercritical cross section is substantially lower than
that with a conventional one. At transonic speeds, the size and it is quite obvious that 6, also satisfies
location of the embedded supersonic zone over the wing affect
the way acoustic signals propagate and. hence, the aerody- L,6, + Lo, = L,01 (3)
namic responses to disturbances. Recent developments in
computational fluid dynamics and the availability of super- and that solving Eq. (3) for 0, is the same as solving Eq. (I).
computers have made accurate flow prediction possible. However, Eq. (3) is more general in the sense that, if it con-
However, for applications like routine flutter calculation and verges, it will yield the steady state o% regardless of whether 0
aircraft design optimization, the currently available codes, satisfies Eq. (2). For example, we could replace o0 by o*/N,
especially the ones for three-dimensional computations like i.e.,
XTRAN3S of Rizzetta and Borland2 and USTF3 of Isogai and
Suetsugu,3 are still much too time consuming. L,04 + Lh = L.021 (4)

As mentioned in Fung,' one of the problems in unsteady
transonic flow computation is the grid for obtaining the solu-
tion. Aside from the issue of finding the best grid for a given - 0 X 0s

wing geometry, a grid must have a local mesh size comparable -toa Coam c,,d 54 x 43
to the radius of curvature of the leading edge in order to prop- a cow" God .,,
erly resolve the fast expansion that determines the size of the -, .,, ,
sonic bubble and the strength and location of the shock. The
computational domain must be large enough to allow the flow -'0
to relax to the freestream :ondition with little confinement cr
from grid boundaries. Almost all grids currently used for -os

00

Presented as Paper 85-1644 at the AIAA 13th Fluid Dynamics. os
Plasmadynamics and Lasers Conference. Cincinnati. OH, July 16-18,
193; received Feb. 17. 19106; revision received Aug. 21. 1986. This 0 o04 06 6 .10
paper is declared a work of the U.9. Government and is not subject to X/c
copyright protection in the United States.
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.. 60 0 Numerical Examiple
-os -as To demonstrate its effectiveness, we have implemented this

technique into the code AZTRAN' for solving the unsteady
00 00 transonic small-disturbance equation. No modification to the

code is needed except adding the stored truncation error values
05 0s, computed from the steady-state solution to the matrix equa-

tions at each time step. Figure I shows different steady-state100 0 04 00 05 10 0 0 ? 04 os 0 0 ,o pressure distributions for an NLR 7301 airfoil at a freestream
x/C X/C Mach number ,. - 0.70 obtained on a fine grid (109x 87)

Fig. 2 COMlpaSfo. Of te eMuedY ,.a distribi., ons (fW lter- and on a coarse grid (54 x 43) that was formed by omitting
yal of a cycle) of a. NLR 7301 airfoil piltcing harmoslily at every other grid line of the fine grid. As a result of faster ex-
M.- 0.76 led Nt reduced freqouAey k- . 1 obtained by differets pansion at the leading edge, the pressure distribution (solid
methods ao different grids, line) obtained on the finer grid shows a stronger shock located

further downstream compared to that (triangles) obtained on
the coarser grid. The pressure distribution shown by the

Table I Compatrison of computaion time for diffeent squares was obtained on the coarse grid with injected trunca-c omputation. CPU's tion error computed from the fine-grid solution. It coincides
with the solid line almost everywhere except near the shock.

NAA-4A-OIO NLR 7)01 where a smearing of the pressure jump occurs mainly because
Case Steady Unsteady Total Steady Unsteady Total of numerical differentiation and graphic interpolation. The
Fine grid 13.2 299.1 312.3 32.9 899.5 932.4 numerical smearing of the shock within one grid point.
Coarse grid 5.5 14.5 20.0 10.4 56.5 66.9 however, is of secondary importance as far as the computation
Coarse + TEl 17.0 16.3 33.3 36.7 59.3 W. of integrated loads for an aeroelastic application is concerned.

Theoretically, unsteady perturbations on a shock create a
singularity, an integrable one, however, in the perturbed
quantities at the mean shock position. In reality, this singular-
ity is often smeared by viscous effects. Motions of the shock, a
nonlinear phenomenon in nature, also cause higher harmonics
in the aerodynamic forces. However, it was shown by DavisHere. 0, denotes the steady-state solution on a finer grid of and Malcolm' that the higher harmonics have little effect on

size h/N. satisfying the difference equation the integrated loads.
Corresponding unsteady pressure distributions at 90-deg in-

LAIN02,N , 0 (5) tervals for the same airfoil pitching harmonically at a reduced
frequency k - 0. 1 are shown in Fig. 2 and their first harmonic

As explained in Fung et &l.5 the term L, 40
° ,, , in Eq. (4) is an decompositions in Fig. 3. It is evident from these comparisons

approximation to the truncation error resulting from a that, except for the minor differences near the shock, the
Taylor's series expansion of the differential equation that Eq. results, including the motions of the shock, obtained on the
(i) is modeling. The difference between Eqs. (3) and (4) is that coarse grid with truncation error injection are just as accurate
the latter contains an approximation of the truncation error of as those on the fine grid. The CPU time, as listed in Table 1,
the steady solution due to discretiation and hence will yield for obtaining five cycles of harmonic motion on the fine grid
the more accurate #%l, as a steady solution if, of course, the was 90 s. for the coarse grid solution it was 57 s, and for the
unsteady effects are allowed to diminish. Assuming that the coarse grid solution with the truncation error injection it was
base grid of size h is fine enough for resolving the unsteady 60 s. A reduction in computation time by a factor of four is at-
part of *,%, there will be very little or no truncation error due tributed to the reduction in grid points and another factor of
to discretization and Eq. (4) should yield more accurate solu- four to the relaxation of the allowable time step imposed by
tions that Eq. (1). numerical stability.

In the case where the spatial operator L5 is linear, Eq. (4) is Similar results for a conventional airfoil, NACA-64A.010,
simply Eq (I) with the term LA42,N added to both sides of it. at a freestream Mach number of 0.796 and a reduced fre-
For nonlinear operators, Eq. (4) will enforce the perturbations quency of 0. 1 are also listed in Table I. Because of the conven-
about a steady state to satisfy the governing equation. It is of tional leading-edge shape, the pressure expansion at the
interest to note that the splitting of an operator into a steady leading edge is quite mild compared to that of the NLR 7301.
and an unsteady operator as in Eq. (1) is necessary only for the Hence, the results obtained on both grids were just as ac-
clarity of the discussion. curate, except near the shock, with or without the truncation

L
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error injection. This verifies an assumption in our theory that
a relatively coarse grid is sufficient for resolving the unsteady
acoustic waves if the steady pressure is accurate.

Conclusion
A simple numerical technique which can be easily im-

plemented in any numerical code for computations of two. or
three-dimensional unsteady transonic aerodynamics has been
introduced. This technique allows the decoupling of a solution
having two distinct length scales into two parts. By solving
each part on a grid of the proper length scale, substantial sav-
ings in computation time and storage can be achieved.
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Refined Numerical Solution
of the Transonic Flow Past a Wedge

S-M. Liang and K-Y. Fungt
University of Arizona. Tucson. Arizona

A nmericial predie combling the 1de of solving a medif ed difference equation sod of adaptive mesh
refitm Is Introduced. The numrical solution ita a nud • I I ImprovWed by sing better approximations of
the trucmnl error comgied from local subdomale grid mflments. This technique is used to obtain refined
solutdon of =endy. rinviacl, tromon flow Pt a wedge. The effects of truncation error on the prmsre
dlstrbudoo. wave drag, seie In. and shock Posiin are Investlted. By comparing the pressure drug to the
shocks, a supeosonlcto-supesone shock orWating from the wedge shoulder is confirmed.

Introduction difference equation and for improving a numerical solution
T HE problem of interest is flow at subsonic freestream on a fixed grid, and that the procedure suggested by Fung et

Mach number M. past a wedge (see Fig. 1). After a al.5 achieves substantial savings in computer time and
compression at the leading edge, the flow expands and storage with minimal bookkeeping effort.
reaches the sonic condition at the shoulder. Downstream of A sequence of improved solutions obtained using this
the shoulder, the flow must return to the subsonic freestream method indicates the existence of both an oblique shock near
condition through a shock, or shocks. Because of its the shoulder and a normal shock downstream of it.
simplicity, this model was used by Cole' and Yoshiharal to
study the characteristics of transonic flow and the validity of Governing Equation and Numerical Scheme
the transonic small-disturbance equation. However, because The governing equation for this flow is the transonic,
of the inherent limitations of the hodograph method used in small-disturbance potential equation:
their studies, certain assumptions regarding the flow pattern
were made in order to have a complete specification of the K-0,-(.i/2)1, +-b, 0 (I)
problem in the hodograph plane. Cole assumed that the
sonic line is locally vertical and contended that the Prandtl. Here, the perturbed velocity potential 0 and the space coor-
Meyer expansion at the wedge shoulder be terminated by an dinates x and y have been scaled properly. K. the transonic
oblique shock, whereas Yoshihara assumed that a smooth similarity parameter, is a result of the scaling, which involves
overexpansion occurs at the shoulder and the supersonic the freestream Mach number, the wedge half thickness 0,
zone is terminated by a normal shock downstream of the and the ratio of specific heats -f. The boundary condition on
shoulder. The flow was studied experimentally by Liepmann the body is the tangency condition,
and Bryson,' whose results were inconclusive about the
oblique shock at the shoulder due to viscous effects, and *, (x,O)-0, x>I
numerically by Yu and Seebass,' whose solution was inac-
curate due to the numerical scheme used and insufficient = 1, x I
resolution at the shoulder. To date, no accurate solution
describing the correct flow structure has been reported, and the far-field boundary conditions are

Realizing that the flow structure is a result of the expan-
sion at the shoulder where small variations in flow variables 0,-0,-0 as x2+y2-_,
may affect the overall flow structure, we apply a subgrid
refinement procedure (suggested by Fung et al.S), which For computational efficiency, this condition may be replaced
allows local, as well as global, improvement to obtain a by an analytical expression for 0 corresponding to a source
refined solution on a fixed grid without changing the base singularity at point (1/1. 0).
grid structure, as is needed in other grid refinement pro- Equation (I) admits weak solutions that satisfy the shock
cedures. In this procedure, a solution is defined on a fixed jump condition
grid and is improved through approximation of the trunca-
tion error, which is usually ignored in a conventional finite- (K - i,) [0,] + [o0,]2 0 (2)
difference approximation. It is demonstrated in this study
that local refinement yields results as accurate as those ob- where the tilde denotes an average quantity across the shock
tained on a uniformly refined grid, that the truncation error and the brackets denote the jump in the argument.
is an effective means for measuring error in the solution of a A balance of x momentum requires that the pressure drag

on the wedge be related to the shock jumps, i.e.,
Presented as Paper 85-1593 at the AIAA 18th Fluid Dynamics.

Plasmadynamicsand Lass Conference, Cincinnati. OH, July 16-I,, x20dx- I (3)
1985: received March 6, 1986; revision received July 24. 1986. This Cx0x - 0,2 -6 wjdy (1
paper is declared a work of the U.S. Government and is not subject to
copyright protection in the United States. This equation is used later for evaluating the accuracy of the
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Kung University, Taiwan. Equation (I) is discretized using the monotone scheme sug-

tAssociate Professor, Aerospace and Mechanical Engineering. gested by Engquist and Osher, 6 and the resultant difference
Member AIAA. equations are solved by a line relaxation method.
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Truncation Error and Grid Refinement chosen, these regions should be a small part of the base
The difference between a differential equation £o - 0 and region. With boundary conditions interpolated from the base

the difference equation that models it is the truncation error solution, refined solutions satisfying
(denoted as TE hereafter), i.e..

L,vNo,N = 0

are then obained and used to form the approximated TE,
Here, £ is the differential operator; *, the solution: and L, -L,,,. Outside the region where refinement is needed,
the difference operator resulting from retention of ap- the TE is assumed to remain zero. The process is repeated
propriate leading terms in a Taylor's series expansion on a with the newly obtained TEA,,, until
grid of typical spacing h.

Ordinarily, the discrete system, L, -0, is solved for an ILoh4,-Lh0,,.,l <6 for all M>N
approximate 0, and the TE is assumed to be small. Unfor-
tunately, unless the local grid size is comparable to, or This procedure is shown schematically in Fig. 2.
smaller than, the local length scale of the solution, the local It was shown by Fung et al. s how, for various cases, this
TE will be large, causing an error in i,. Attempts and procedure can lead to improvement of numerical solution on
limited successes have been reported on various adaptive grid a fixed grid, including the sharpness of shocks. A similar
distribution procedures (e.g.. Pearson? and Babuskal), procedure has been suggested by Brandt.' He pointed out
which tend to minimize the local TE. However, these that nesting subgrids can be coupled with the multigrid pro-
methods very often depend on the criteria used and are sen- cedure. which has been widely used for accelerating the con-
sitive to the control parameters introduced in the procedure vergence of numerical schemes.
for relating the grid sizes to the measures of error. In Ref. 5,
Fung et al. explained that it should be possible to obtain at Results and Discussion
the node points of a grid the values of the exact solution to a The base grid for all of the numerical results is a uniform
differential equation if the TE were known. This means that grid of spacing h-0.1 over a computational domain of size
if the goal is to improve the numerical solution, the basic 6 x 6 wedge chords. Figure 3 shows the distribution of the
grid structure does not have to be changed-only improved estimated TE. L2oj, computed after obtaining the initial
values of the TE need to be provided, base solution 4. The values shown have been multiplied by

It can be shown that if the exact solution * were known, a factor of 10. Subregi,, 3 outside of which the maximum
the TE can be computed exactly by applying the operator L, TE is less than the preset r are shown in Fig. 4. No attempts
to 0. e.g.. were made to tailor these regions to the minimal sizes. The

TE(Oh) , -L,, case of r - 0 means that the whole domain is refined. For the
case of r - 3.0, two regions were identified; one is about the

Hence. if o, , is the refined solution on the grid of size h/:V leading edge and the other about the shoulder, as expected.
(i.e., subdividing the base grid of size h, N times), the Local solutions over these regions were then obtained with
operation interpolated boundary conditions from o%, (for details, see

Ref. 10). From the local refined solution, the approximated
-LO, ..- TEA, .,TE(4.h) truncation error is then computed and used to obtain the

next refined solution, o0,, on the base grid satisfying Eq. (4).
would yield better approximations of the TE as the refine.
ment factor N increases. Of course, this is true only if the
scheme is consistent with the differential equation being ap- TE * 0
proximated; i.e., the truncation error on the finest subgrid
diminishes while the truncation error on the base grid ap-
proaches the asymptote. hh *

To effect an improved solution on a fixed grid by TE in- LhOh + Ti * 0
clusion. we use the procedure suggested by Fung et al.' To
begin, we choose a base grid. which will not change through.
out the procedure. The TE is set to zero, and the discrete IDENTIFYSUBGRIDS BY
equation L,6,+TE,, (4) I1.20 1 >

is solved for the first approximation o" . Regarding 0"l as a L~
refined solution for a grid of size 2/t, an estimate of the TE Lh/Nhl N
is then formed by computing ON SUgGRICS

The regions where the estimated TE, - L,',. is larger than
a preset value r are identified; if the base grid was properly

S.,c L'"..<_

Fig. 2 Schematik of adaptive grid refnement with tuntlon error
FIg. I flow on wdg e a traiisdt Mach number. injection.
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Table I Comparson of dreg values for differenw values of r after the firm refloemeut cycle

Relative
Refinement Preset Pressure Wave drag due to shocks CPU on error of

cycle. k tolerance. r drag Oblique Normal Total CRAY X-MP, s wave drag. No

0 - 0.750 0.300 0.538 0.838 33 12
I 0.00 0.772 0.201 0.610 0.811 629 5
1 0.05 0.773 0.202 0.608 0.810 66 $
1 0.50 0.770 0.179 0.627 0.806 S3 S
I 3.00 0.784 0.244 0.575 0.819 50 5

Table 2 Compa oa of the drag values after different eycles of refinement. r = 0.05
Relative

Refinement Grid refinement Pressure Wave dram due to shocks CPU on error of
cycle, k factor. N drag Oblique Normal Total CRAY X.MP. s wave drag, se

0 I 0.750 0.300 0.538 0.838 33 12
1 2 0.773 0.202 0.608 0.810 66 5
2 2 0.773 0.202 0.608 0.810 78 5
2 4 0.793 0.129 0.672 0.801 255 1

F 3. 0 0 4 0 t 0 4 0 0 0 0 5 S 5 0 t 0.
0. 0 0 1 # 0 4 0 5 0 0 . 1 0 . 1 0 0 .5. 0 5. e * 0 9 5 0 0 6 0 0 5 0 0 1 t S1 9.

0. 0. 0 0 0 0 0 0 0 0 0 t .0 .
,. 5. 0i 0 0 0. 0 0 4 5 0 0 0 5 S 0 1 -2 t 0 O

0. 4. 0 0 0. 0 0 0 I 0 0 . 1. 1. -1 0 0 0.Flg, 3 Dlsblo o f tbe ellatd tan~lOn *. 5. 0 0. 0. 0 * o 0 0 C 0 4 . 5. 1. 1..!1. 0I 0. 9.
error. LMEh (valuughave been multiplied by 10). 5. 0 o. 0. 0. 0 e o 4 o o * . 0 1. 2. 1 -*L. -I 0 0.

*. a. a1. a. *. C 0. 4. 0. 4 0 . 0 0. 2. 2. 1. -1. -, I, s.
* o. 0 0. 0 0 -0 * . 0 0 . 2. 3 1 -1. -1 -3 t 0.*. * *. . .. *. o * *. *. 0 t. 

1
,. 3. 5 -, -! 2 0 5.

0. o. 5 0 0. o 6. o 5 0 5 0. 5 . 1. -$. -4. +' 4. 0 e.
o o. 9 5. o. o 0 0 0. 0 -1. 1. 0 1. -4. -6. -' -3 S o. e
* e 9. 1. 1 -t -I o 9. - . . P -io. -L. -] 1, - 0. e.
5. 0 e I. 4. -tO -3. * 9 -5 ]137 - ..3 e * . 1 -7 11 * 0..

. 5. -. -S - - 3 15 0 1 -4 -95 1O 11. . 1 i t 1 0.

I T

LCAOING toi S"O.OOCE

-z 2 0 z a to Eq. (3)1 obtained for different values of r which corres-
6 pond to different regions of refinement. It is quite clear

from this comparison that a subregion of r - 0.05 is adequate
for accurate calculations. The difference between the wave

s0 and the pressure drag diminishes after one cycle of refine-
a ment from 12 to 5%. at a cost of only twice the computation

time needed for the base solution. This is a substantial sav-
ings relative to a uniformly refined solution, which costs 20

0-0s times as much as the base grid solution *0. It is shown that
further savings in computation time are possible with minor

2 losses in accuracy. Another cycle of refinement, keeping the
2 2 refinement factor the same (N-2) but using boundary con-

ditions from the base solution for the local refined solution.
showed that the effects due to the newly updated boundary

L oconditions on the base solution were minor compared to

Lthose of increasing N. The difference in the drag values is
reduced to less than to' after two cycles of refinement,

.2 -1 0 t 2 2 4 k-2, and for a refinement factor N-4. but to only 507 if
Fig. 4 Compttnl doN'lm sod subregion r varou id N-2 (Table 2). For two cycles with N=4, the computation
refim mo. time was 255 s, approximately four times that for one cycle

because the total number of grid points was increased by the
same factor; a better strategy would be to apply the adaptive

Figure 5 compares the base solutions before and after the refinement procedure to the local solution coupled with a
first cycle of refinement with that obtained on a uniformly pattern recognition routine to determine the subgrid
refined grid size of h/2. It shows that this refinement pro- geometry, as demonstrated by Berger and Oliger," instead
cedure is accurate and efficient. The effects of the refine- of the uniform refinement. The base solution obtained after
ment with TE injection on the sonic line and on the shock two cycles of refinement was accurate within 1% in the drag
are shown in Fig. 6. Because of the improvement at the values, the same order of magnitude as the maximum
shoulder, the normal shock moves downstream and becomes residual of the difference equation. Further refinements are
stronger. Table I compares values of the pressure drag on not needed unless the residual tolerance is set to a smaller
the shoulder and the wave drag due to the shocks (according value in solving the difference equations.
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4 +

3 Curve 2: Withqj M.1 7 .-
2 SO~iC 0-0_ _ _ _ _ _ _ _

Pg$Soakc lime and obliqueshcK05

2--------- --- .

K - 0.5.~~.. - -- ---

Fig. 9 Velocity field. athe sonkc bubble. K .S.

(n evaluating the shock drag, one notices chat the drag due
to the normal shock is about four-fifths of the pressure drag
on the shoulder. -,o detect the momentum loss, we moved a

* control volume along a grid line parallel to the x axis and
computed the losses at different x stations. These values are

j 0 6~to~cTtt.h *o~iplotted in Fig. 7. The coordinates of the midpoint between a
- t5u: . maximum and a minimum are shown by the crosses in Fig.

8. indicating the location of an oblique shock at an angle of
SWith T11i. h - 0. 1. ki*1, 0. 05 about 41 deg with the x axis due to the compression im-

* mediately after the Prandif-Meyer expansion.
* ...* ~* . .* ,* *A close look at the velocity field in Fig. 9 reveals the

I qualitative structure of the flow at the shoulder, which is of
Fig. 6 Effects of truncation ecroo inject..on te soakc Haseod prime interest. By measuring the flow angle, it is found that
shock location. K- 0.5. the flow overexpands as much as - 3.1 deg at a point 0.3

chord above and 0.6 chord downstream from the shoulder.
A local analysis"2 shows that the flow expands to a max-

3 s-t0o0s imum velocity
I * 0.5555u(l ,)=K.(3/2)v) - .810

Y 0.0soright after the shoulder and compresses along the wall at the

0.1sorate
u- (/3/2"( - 2-"3AI'3)+K

Ci which is quite close to the numerical prediction. Because of
the compression, the characteristics coalesce into a weak

U ________________________________shock wave starting with a slope of (2/3)"' a41 deg, a zero
SE SE t. 115 I. u ' curvature, and a negative third derivative. The maximum

P4g.7 Wistributi. of momentum Iowae i" a control volume at velocity, linearly extrapolated from downstream to the
differeti values of y. x-OS. shoulder, assumes the value 1.878 on the base grid and the
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values 1.864 and 1.819 after the first and second cycles of 2Yoshihara. H.. "On the Flow Over a Finite Wedge in the Lower
refinement, respectively, approaching the theoretical value as Transonic Region." WADC Tech. Rept. 56-444. ASTIA Doc. AD
the solution on the base grid is improved. It is this oblique 110423. June 1956.
shock that accounts for the balance of momentum. 'Liepmann. H. W. and Bryson. A. E. Jr.. "Transonic Flow Past
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In the context of finite difference approximation, the difference between a differential equation and
the discrete (difference) equation that models it is the truncation error, and it can be easily shown that
if the truncation error were known, solving the discrete equation would yield the exact solution at
nodal points. An adaptive procedure for improving the accuracy of a numerical solution on a fixed grid.
which we call the base, through the approximation of the truncation error by subdomain grid
refinements is introduced. Regions where refinements are needed are identified using an estimate of
the truncation error. Local solutions on grids tailored to each of the regions are constructed and used
to form approximations to the truncation error, which is then 'injected' into the base grid to improve
the base solution. A one-dimensional model of the convevtion-diffusion equation is used to demon-
strate the basic ideas behind this method: two other examples which imply extensions of this method to
multidimensional problems are also studied.

1. Introduction

Since the advent of the computer, scientists and engineers have been using discrete
approximations to obtain solutions to differential equations of various complexities. Most
problems can be solved using a computer, given enough storage and computation time. In
practice, the class of problems that can be solved is directly limited by the available memory
capacity and speed and, indirectly, by the efficiency of the method used to calculate the
solution. In this paper, we introduce a grid-refinement procedure which should substantially
improve the efficiency of obtaining uniformly accurate numerical solutions.

In solving a differential equation that models a physical problem of interest, e.g., the
Navier-Stokes equations in fluid mechanics, the solution is represented by values at points
distributed over the space on which the problem is defined. This distribution of grid points is
usually at one's discretion and is generally related to the geometry and some characteristic
features of the problem. It directly affects the accuracy of the solution. The optional
distribution of grid points for various problems has been attempted by many researchers. A
review by Thacker [1] surveyed the various methods currently used to generate grids that are
geometry related. These methods are concerned with the regularity and smoothness of the

0045-782/883S3.50 (Q 1988, Elsevier Science Publishers B.V. (North-Holland)
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distribution of the grid generated and the satisfaction of certain predetermined criteria that are
believed to be essential for accurate solutions. However, there is no guarantee that the
solution obtained with such grids will meet certain accuracy requirements, nor that the
number of grid points will be optimum for a given accuracy; such goals can only be realized by
grids that are, at least to some degree, solution dependent.

As pointed out in a recent paper by Benek, Steger and Dougherty [21, solution-dependent
grid-generation methods can be classified into three categories: grid patching, grid embedding,
and grid adapting. The applications of these methods are problem oriented. Grid patching and
grid embedding are based on the idea of dividing the problem domain into subdomains which
are easier to handle or over which the solutions can be obtained more efficiently than over the
full problem. A typical example is the aircraft design and analysis problem [3, 4]. Grid-to-grid
communication is handled by interpolations, and care must be taken at intergrid boundaries to
ensure certain compatibility conditions are satisfied, e.g., conservation of fluxes [5]. Usually,
this type of grid generation is only problem dependent, designed according to the user's view
of the problem, but can be made flexible enough to move around the problem domain, change
size and density, and retire if no longer needed [6]. These procedures require extensive
bookkeeping for both the grid system and the solution.

There are two grid-adapting strategies. One strategy is to redistribute a fixed number of grid
points according to some criteria such that the overall error measured by some means is
reduced (e.g., [7,8]). The other is to increase the number of grid points near regions where a
measure of error indicates refinement is needed (e.g., [9, 101). These methods are most
effective for problems with local singularities or layers of rapid changes, e.g., shock and
boundary layers. However, a successful application of these methods depends on the criteria
used for grid redistribution or addition, which may be very sensitive to the behavior of the
solution, and repeated computations are needed before a satisfactory result is achieved. In the
case of grid addition, redistribution of grid points may also be needed to avoid the error due
to abrupt changes of grid-point distribution. For multidimensional problems, the extra effort
needed to manage the complexities associated with adaptive gridding could upset the overall
effectiveness of these methods. Advanced computer science techniques like pattern recogni-
tion, artificial intelligence, and data base management will definitely play a significant role in
reducing the total cost of obtaining a numerical solution.

A natural question arises in refining numerical solutions: is it necessary to increase the
number of grid points or redistribute them in order to improve the accuracy of a numerical
solution? The answer is not as straightforward as one might think. Customarily, the error of a
numerical solution is related to the truncation error or the residual due to discretization.
When a measure of the truncation error is larger than a preset value in certain regions, the
addition of sufficient grid points in those regions reduces the truncation error and, hence,
improves the accuracy of the solution, a consistency requirement. However, it will be shown
in Section 2 that an improved solution is possible without changing the base grid structure by
using an approximation of the truncation error obtained from a local refinement. These two
approaches, while similar in nature, are different in methodology.

An adaptive refinement procedure for solving differential equations is introduced in Section
3. Applications of this procedure to typical problems in fluid mechanics are demonstrated in
Section 4.



K.- Y. Fung et al.. Adaptive refinement with truncation error injection 3

2. Truncation error and grid refinement

Most numerical analysis books state that a differential operation L operating on a function
V is related to a difference operator L, (with the subscript h denoting the grid size), operating
on ( by the truncation error (abbreviated TE hereafter), i.e.,

Ljo -LhW + TE((p, h). (1)

This result of a Taylor-series expansion is the basis for all finite difference techniques.
Ordinarily, the direct system,

L,,ph = 0, (2)

is solved for ph which satisfies, consequently, the equation

L p = TE((p,,, h). (3)

As a consistency requirement, the TE vanishes as the step size h approaches zero, leading to
the limiting solution p,

lir (P = (,
h-0

that satisfies the differential equation

L p =0. (4)

Hence, it is assumed that if the TE is uniformly small, solving the discrete system (2) will
iead to a good approximate solution 'Ph of p. However, in many problems the TE is a rapidly
varying function of its arguments. The idea of conventional grid-adapting techniques is to look
for or modify the distribution of grid points according to some preset criteria which will render
uniformity of truncation error across the solution domain. Unfortunately, there is no simple
way to generate a grid that minimizes the truncation error for a given problem and, in many
cases, the process of finding the optimal grid is more complicated and time consuming than
computing the solution itself.

We must remember that it is (4) that one wants to solve, not (3), which is equivalent to
solving the discrete equation (2). The discrete equation that ought to be solved corresponding
to solving (4) is implied by (1), i.e.,

L, p, + TE( , h) - 0. (5)

Here, we have deliberately denoted the argument function 'p of the TE with a tilde, which can
be different from the solution 'h. Notice that if the exact solution were available, it would
satisfy (5) exactly, with = o = $. This implies that the TE can be computed exactly by
applying the operator LA to the solution, e.g.,
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TE(,0, h) - - Lho, (6)

and that solving the system

p (l, = -TE(V, h) = v

will yield the exact solution at nodal points. Hence, it is clear that if the goal is to improve a
numerical solution, the basic grid structure need not be changed, only improved values of TE
at grid points need to be provided. To emphasize this point, the base grid in the examples
considered here is never changed. The strategy one would use in making tradeoffs between
the base grid and approximating the TE is not discussed in this paper.

Analytically, the TE consists of all higher derivatives of the function being expanded in a
Taylor series, if they exist. If more neighboring values of a function are known, higher
derivatives can be computed, and hence the TE can be better approximated. A TE sequence
may be defined as follows:

TE,,,v = TE(jp,,v, h) = - LAVAN, (7)

where the subscript h/N refers to values based on a grid of size h/N (e.g.. subdividing the base
grid of size h, N times). For simplicity, we may assume (p, satisfies the equation

LIN'hV = 0. (8)

With these definitions and the substitution of (7) into (6) and setting = 'Ph,sv it is easy to see
that 01 = 911N is a solution of (5) at coinciding nodal points (or through the use of an
interpolation function).

All we have shown so far is that it is possible to obtain a refined numerical solution
satisfying (5) without changing the base grid, provided the TE is known to the same order of
accuracy as the solution. The inclusion of TE into the difference equation had been suggested
before (11-141. Pereyra [111 proposed a deferred correction procedure to compute the TE
progressively. Warming and Hyett (121 and Klopfer and McRae (131 implemented it in forms
of a modified equation. For some simple linear differential equations, even analytical
expressions of the truncation error in terms of lower derivatives of the unknown function have
been used. However, the complexity involved in the derivation of such terms and, in some
cases, the numerical instabilities caused by the presence of certain terms has discouraged the
more popular use of such schemes. In the following sections we will introduce an adaptive
procedure s'milar to that suggested by Brandt (141 for solution refinements based on the ideas
discussed in this section and show that the injection of the TE is a simple but effective means
of improving the accuracy of a numerical solution.

3. A refinement procedure

Boundary and internal layers are common structures in nonlinear mechanics. Analytically,
such layers are commonly found through singular perturbations, whereby solutions in different
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regions are described by simplifed versions of the governing equation obtained using a scaling
pertinent to the local features. The grid refinement procedure used here is, in many ways.
analogous to the singular perturbation method. Clustering grid points over areas where rapid
changes occur is effectively scaling the local solutions. A discrete operator L, can be regarded
as a simplified operator of the full equation and is valid everywhere except in regions where
the omitted higher-order terms, TE(j, h), become dominant.

The refinement procedure we have chosen uses the TE as an indicator and as a means for
improving the solution. To begin, a base grid of size h, not necessarily uniform, is chosen for
the base solution p.. The TE is initially assumed to be zero. Equation (5) is then solved for (p,
to a preset accuracy s. Regarding (p. as a refined solution for the grid 2h, which is formed by
omitting every other grid point of the base grid, the truncation error is then estimated using
the formula L,,(p. for every point of the grid I except for the boundary points and the ones
next to them. The regions where the estimated TE, -L, (p,, is larger than a preset value e (or
other appropriate criterion) are identified; for this, a pattern recognition algorithm like that
described in [6] will be very useful. Outside the region where the truncation error is injected.
TE is set to zero. Buffer zones are then introduced with TE = 0 but with the mesh refined to
achieve smooth transition of solutions. Information on the size of the region with TE
injections, solution boundary values, and parameters like the refinement factor N of these
regions are then transmitted to the finer grid solver, Lh,, =0, to obtain a refined local
solution. @hiV. These local refined solutions are then used to form the approximated TE.
-LA A(N, for the next cycle of refinement until

I .- LAA,.wI < c for all M > N.

ADAPTIVE GRIO REFINEMENTS

TE' 0

REF114E LOCALLY
IF TE ESTIMATION

CONVE GED
if

TE
REMAINS

TME4 SAME SOLVE

L"/Noft/N *0

COMPgTE"ICTE,4 TE &PP*OXIMATION

Fig. 1. Procedure for adaptive grid refinement with truncation error injection.
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At this stage, further refinements will have no effect on the solution 0. which then satisfies (5)
to the preset accuracy e. This procedure is shown schematically in Fig. 1.

Note that each refinement may have its own local solutions injecting their TE either to their
parent solutions or to the base solution, its own governing equations, and its own grid
distribution. No attempt is made here to optimize the strategy for grid nesting. In the case of
using a local stretched grid, interpolation is needed to obtain the TE. A major advantage of
truncation error injection is that, unlike other grid-refinement methods, there is no particular
need for storing the finer-grid solutions. Once the TE is obtained, the approximated values of
the TE indicate how good the local solution is and if needed refinements can be obtained with
minor effort.

4. Numerical examples

The first example chosen to demonstrate the adaptive procedure was the classical example
in boundary layer theory modeled by the one-dimensional convection-diffusion equation:

h v,,''= @ ,. with o(0) 0 and 0o(l)"-1.

This example has been used by many authors to demonstrate special properties of their
methods.

In particular, we chose central differences for both the first and second derivatives. It is well

floh/o

[ --- ExAc'r

Oh 1.00

-0.79

-2.58

-4,3?

-616
0.00 0.25 050 0.75 1.00

IREYNOLOS NUMBER 1 00

CENTRAL DIFFERENCE SCHEME

SOLUTIONSOf r hX/RC.0.*/0X' -O#X .0

FiS. 2. Solution without TE injection.
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known that for a grid Reynolds number Re > 2, nonphysical spatial oscillations due to large
dispersive truncation error occur. Figure 2 shows the erratic solution for Re = 100 and step
size h - J. It bears no resemblance to the exact solution, which remains flat until near the
right boundary and shoots up exponentially to the boundary value o(p1) = 1.

After a TE estimation (dashed line in Fig. 3(a)) which indicates that refinement is needed
everywhere, the chosen subdomain (same as the base grid) is divided so it has a local step size
of JA. A refined soution %,, is then obtained, solving (8). and the corresponding TEA,. is
computed and injected into (5). The solution obtained and absolute error are depicted in Figs.
3(b), (c). The effects of the truncation error are evident by the disappearance of the
nonphysical oscillations in the recomputed solution vh. Progressive improvements of the
solution after the second and third cycle of refinement can be seen in Figs. 4 and 5. Because of
the preset tolerance (e - 10-5), the refined region was the whole region for the above cases.
Figure 6 shows a converged solution accurate within 10- in absolute error after the fourth
refinement cycle. From the estimated TE, the algorithm decided that it was sufficient to refine
the grid from x - 0.375 to x - 1. The total number of grid points used in the last case was 81.
only a few points more than the previous ,efinement. It is interesting to note that in the
converged solution the error is uniformly distributed across the solution domain. Further
refinements showed no further improvement in the solution, indicating that the last local.
refinement was enough to satisfy the preset error criterion. Since this is a linear problem, a
directed computation using 217 uniformly distributed points, the same total number of points
used in this procedure, shows a total mean-squared error of 0.023; an improvement of 10- 3 is
achieved using this refinement strategy with the same amount of computational resources.

It is of interest to note that the choice of a scheme is immaterial to the effectiveness of this
solution refinement method. We have applied it to the same problem using an upwind scheme.

- E--- ESTIMATED TE D irr 4 TE FRom h /2 (16 Xre

- PPROXIMATED TC "ho "T'h/1

0.54 0O.0 ;.o T

0.26 .0.601.75

0.01 9 0.40 0.50

-0 .2 0.20 0.25-0SI t i t

-0.,21 - 0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

3a X X 3CX

REPINE LOCALLY IF M,..00OI CONVERGED iF CHANGES OF - 0001 REYNOLDS NUMBER a 00

FROM POINT I TO POINT 2 CENTRAL DIFFERENCE SCHEME
ESTIMATED TRUNCATION ERROR ERROR OF SOLUTIONS SOLUTIONS OF hX/RE.0 10/DX4'D4vDX0i

Fil. 3. Solution with TE injection after first cycle.
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ESTIMATEO TE £ WITH TE FROM #,h/4 (32 PTS)

- APPROXIMATED TE L '-T "E," h/4

T~r E
0.74 0.2 10 0r

0.54 , 0.39 0.75

0.34 c 0.26 O.SC

0.14 0.13 0.25

-0.04 0.00 "0.00 , 2
0.00 0.25 0.50 0.75 1.00 0.00 0,25 0.50 0.75 1.00 0.00 0.25 050 0.75 I.00

4O 4b X 4C
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Fig. 4. Solution with TE injection after the second cycle.

The results are even more impressive. A solution accurate to 106 is achieved with two levels
of local refinement and a total effort equivalent to that of using 29 points. However, the
examples using central differences are more illustrative.

The second example was the reflections of a two-dimensional oblique shock from a wall. We
solve the Euler's equation using the MacCormack's scheme because of its simplicity and
popularity. Figure 7 shows a display of the exact pressure distribution for an incident shock, a

---- ESTIMATEO TE 4 WITH TE FROM #h/9 (64 P7S)

APPROXIMATED TE

I.E E O
0.93 0.08 o.00

0.68 0.06 0.75

0.431 0.04 050
0.18, , 0,02 0.25

-0.07 0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 ,.00 000 0.25 0.50 0.75 t0

X X X5o f1l 3c

REFINE LOCALLY IF TE •.000I CONVERGED IF C&NS-ES OF# ,.0001 REYNOLDS NUMSER 100
FROM POINT I TO POINT 9 CENTRAL OIFFERENCE SCHEME
ESTIMATED TRUNCATION .. ROR -"ROR OF SOLUT! .N"( SOLUTIONS OF h/RE- O1I'/OXs-O*/OX.C

Fig. 5. Solution with TE injection after the third cycle.
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- ESTlA1 .O TE X WiTH TE Pom (p,/11 (80 PS)

-APPROXIMATED TE

TE E (XO'.
0.99 o.1 ;1-T

0.74 1 0.05 115

050 0.50

0.25 0.08 0.25 ,

0.00 - --- :4 - -0.14 0.00--
0.00 0.25 0.50 0.?5 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.23 0.50 0.75 1.00X X K

6 6b 6c

REFINE LOCALLY IF TE '.0001 CONVERGED IF CHANGES OF # c.0001 REYNOLDS NUMBER a I00
FROM POINT 4 TO POINT 9 CENTRAL DIFFERENCE SCHEME
ESTIMATED TRUNCATION ERROR ERROR OF SOLUTIONS SOLUTIONS OF h/RE. 021/0X4-oqs/0X-0

Fig. 6. Final converged solution after the fourth cycle.

SHOCK REFLECTION
EULER EQUATIONS
MACCORMACK SCHEME

EXAcT SOLUTION

(a)

EXACT TRUNCATION ERROR -L0*

(b)
Fig. 7(a). Pressure contours of an oblique shock reflection. (b) Exact truncation error computed. TE values have
an increment value of 0.001. starting at a base value of 0.01.
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pressure discontinuity of 35* at free stream Mach number M. = 2.013 over a 11 x 31 grid of
step size h = 0.05. Fifteen contour levels are plotted in increments of 0.5 beginning at 0.73.
The zigzags are a result of representing on a grid the abrupt pressure jump from one nodal
point to another, depending on whether the point is before or after the shock, by interpolated
contours for graphic display. For reference, the exact truncation error computed from the
exact solution (Fig. 7(a)) is shown in Fig. 7(b) in increments of 0.005 starting at 0.001. It is
clear from Fig. 7 that local refinements with rotated grids aligned with the shock would be
most effective. However, our intention in this example was to show that even for a nonlinear
operator, the exact solution can be recovered if the TE is given or computed locally. Figure 8
shows the approximated truncation error from a refined solution with a refinement factor of
four. A comparison of the pressure contours before and after TE injection shows marked
improvement. Except for the small wake behind the shocks, which is due to the numerical
scheme selected, the refined solution is very close to the exact one.

The third problem was chosen to study this procedure with rotated grids aligned with the
discontinuities. We solved the linear, two-dimensional convection-diffusion equation for a
nominal quantity T, modeling two adjacent fluids of initially different temperatures moving at
the same speed. Upwind differencing was used for the convective terms. It is well known that
the artificial cross-wind diffusion due to upwind differencing is a major source of error. It
causes excessive spreading of the discontinuity. Figure 9 shows the temperature contours

TEh/4

TRUNCATION ERROR, RF*4

TRUNCATION ERROR CONTOURS COMPUTED
FROM A REFINED SOLUTION WITH A
REFINEMENT FACTOR OF 4.

BEFORE Lmo

AFTER "2-rE,/4

00

Fig. 8. Pressure contours before and after truncation error injection. N -4.
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Y 1 .5
Y

T, 1t.5

0.6-

o .. 0

'-8'o 0.2 0.4 0. 0 . 1.0
x

Fig. 9. NJumerical solution of a temperature shear layer (grid 60 x 40), no TE injection.



12 K.-Y. Fuzng et al.. Adaptive refinement with truncation error injection

Y 1 .S . ....

1,.2

0.9

0.3.

0 "8.0 0 .2 3.4 0.S 0.8 1 0

x

Fig. 10. Numerical solution of a temperature shear layer, grid 120 x S0. no TE injection.

solved on a 60 x 40 base grid of step size h = 0.25. A slightly improved solution on an
unrotated 120 x 80 grid is shown in Fig. 10 for comparison. This does not compare well with
the exact solution depicted in Fig. 11. Given suitable pattern recognition schemes, it would be
natural to introduce a rotated grid parallel to the flow direction over a small region
surrounding the discontinuity with boundary conditions extracted from the solution in Fig. 9.
Here, we have done this manually with a 20 x 40 grid aligned with the flow. Due to grid
rotation, the cross-wind artificial diffusion is minimized, resulting in a sharp temperature
gradient very close to the exact solution. The isotherms that appear near the upper and lower
boundary of the refined local solution on the subgrid (Fig. 12) are an effect of the incorrect
boundary conditions extracted from the base grid solution; these can be avoided simply by
taking a larger subgrid. However, with the injected TE, the improved base solution provides a
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Y 1 S~

0.6

080 0. .' 0.6 0 a .
X

Fig. 11. Exact solution of a temperature shear layer on a grid of 60 x 40.
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Y

-0.3000.

0 - 0.4 0.6 0.8 1.0 12

x
Fig. 12. Locally reined solution on a rotated grid of 20 x 40.

Y1.5

0.69

0 .3

0 .0 0 .2 -0.& 0 .6 0. 1.

x
Fig. 13. Improved solution of a temperature shear layer with TE injection, grid 60 x 40.
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sharp gradient without such isotherms (Fig. 13), which shows that the base grid solution is
readjusted smoothly through the artificial boundaries.

The examples given here demonstrate various aspects of the TE injection method and
show, in particular, that very accurate solutions can be obtained on relatively coarse meshes.

S. Conclusions

It is well known that if the truncation error in a discrete approximation to a differential
equation were known exactly, the values of the exact solution at the discrete points could be
determined. This fact, along with adaptive mesh refinements to determine the truncation
error, is used to produce highly accurate solutions to model problems on relatively coarse
grids with substantial savings in computer time and use of computer memory. Improvements
in the local as well as global accuracy of a solution on a fixed grid are found by refining the
grid to estimate the truncation error and by injecting this truncation error back into the
solution of the discrete equation on the unrefined grid. This use of solution adaptive grid
systems reduces the dependence of the solution on the choice of the grid and, hence, the effort
of grid generation.
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